
Scaling Proof-of-Replication for Filecoin Mining

Ben Fisch1, Joseph Bonneau2, Nicola Greco3, and Juan Benet3

1Stanford University
2New York University

3Protocol Labs

Abstract

A proof-of-replication (PoRep) is a proof system that a server can use to demonstrate to
a network in a publicly verifiable way that it is dedicating unique resources to storing one or
more replicas of a data file. While it is not possible for PoReps to guarantee cryptographically
that the prover’s storage format is redundant, PoReps do guarantee that:

(a) The prover must be using as much space to produce the proof as replicas it claims to
store (it is a proof of space)

(b) The prover can retrieve a committed data file (it is a proof of retrievability)

(c) The prover can use the space to store this file without any overhead

In this sense a PoRep is a useful proof of space. It is uniquely suited to replace proof-of-
work in Nakamoto consensus as a Sybil resistance mechanism, while simultaneously incen-
tivizing and subsidizing the cost of file storage.

Technical report This is a short technical report on our constructions. A more detailed
paper is forthcoming with information about our prototype implementation of PoReps.

1 Proofs of Replication

A PoRep operates on arbitrary data D ∈ {0, 1}∗ of up to O(poly(λ)) size for a given security
parameter λ. All algorithms are assumed to operate in the RAM model of computation. Parallel
algorithms operate in the PRAM model.

1. PoRep.Setup(λ, T) → pp is a one-time setup that takes in a security parameter λ, time
parameter T , and outputs public parameters pp. T determines the challenge-response
period.

2. PoRep.Preproc(sk,D)→ D̃, τD is a preprocessing algorithm that may take a secret key sk
along with the data input D and outputs preprocessed data D̃ along with its data tag τD,
which at least includes the size N = |D| of the data. The preprocessor operates in keyless
mode when sk = ⊥ .

1

3. PoRep.Replicate(id, τD, D̃)→ R, aux takes a replica identifier id and the preprocessed data
D̃ along with its tag τD. It outputs a replica R and (compact) auxilliary information
aux which will be an input for the Prove and Verify procedures. (For example, aux could
contain a proof about the replication output or a commitment).

4. PoRep.Extract(pp, id,R)→ D̃ on input replica R and identifier id outputs the data D̃.

5. PoRep.Prove(R, aux, id, r)→ π on input replica R, auxilliary information aux, replica iden-
tifier id, and challenge r, outputs a proof πid.

6. PoRep.Poll(aux)→ r: This takes as input the auxiliary replica information aux and outputs
a public challenge r.

7. PoRep.Verify(id, τD, r, aux, π) → {0, 1} on input replica identifier id, data tag τD, public
challenge r, auxilliary replication information aux, and proof π it outputs a decision to
accept (1) or reject (0) the proof.

PoRep interactive protocol These algorithms are used in an interactive protocol as illus-
trated in Figure 1. The setup (whether a deterministic, trusted, or transparent public setup)
is run externally and pp is given as an input to all parties. For each file D, a preproces-
sor (a special party or the prover when operating in keyless mode, but not the verifier) runs
(D̃, τD) ← PoRep.Preproc(sk,D). The outputs D̃, τD are inputs to the prover and τD to the
verifier.

Transparency, public coin, and public verifiability A PoRep scheme may involve a
trusted one-time setup, in which case PoRep.Setup is run by a trusted party1 and the output pp
is published for all parties to see. A transparent PoRep scheme is one in which the setup does
not involve any private information. This trusted setup is an independent, one-time procedure,
and the trusted party that runs the setup should have no further involvement in the interactive
protocol. The data preprocessor may use a secret-key, but it is not trusted (in particular it may
collude with the prover). A secret-key preprocessor only has implications for data retrievability,
but not for the security of the publicly verifiable data replication (or proof of space). This is an
important distinction from previous notions of proof of data replication [6, 27].

ε-Rational Replication An ideal security goal for PoRep protocols would be to guarantee
the following properties, described informally:

Any prover who simultaneously passes verification in k distinct PoRep protocols
(under k distinct identities) where the input to PoRep.Replicate is a file Di in the ith
protocol must be storing k independent replicas, one for each Di, even if several of
the files are identical.

By “storing k independent replicas” we mean that τ is a k-replication of a file D if the string
τ can be partitioned into k substrings τ1, ..., τk such that each allow full recovery of the file D.
More generally, we say that τ is a k-replication of a vector of (possibly repeating data blocks)

1As usual, the trusted party can also be replaced with a committee that runs a multi-party computation
(MPC) protocol to generate the public parameters

2

Prover Verifier

Replication Phase

1 : R, aux←R PoRep.Replicate(id, τD, D̃)

id, aux

Challenge-Response Phase

2 : r ←R PoRep.Poll(aux)

r

3 : π ←R PoRep.Prove(R, aux, id, r)

id, π

4 : b←R PoRep.Verify(id, τD, r, aux, π)

Figure 1.1: The diagram illustrates the interaction between a prover and verifier in a PoRep protocol.
The setup and data preprocessing is run externally generating pp ← PoRep.Setup(λ, T) and D̃, τD ←
PoRep.Preproc(sk,D). The challenge-response protocol is timed, and the verifier rejects any response that
is received more than T time steps after sending the challenge. This is formally captured by requiring
PoRep.Prove to run in parallel time at most T . The propogation delay on the communication channel
between Prover and Verifier is assumed to be nominal in comparison to T .

D1, ..., Dk if τ can be partitioned into k substrings as above such that for each Di there is a
unique τi from which Di can be fully recovered. (Note how this is the similar to the definition
of an optimal erasure code with rate 1/k, yet a weaker requirement as the data in an erasure
code can be recovered from any 1/k fraction of the bits).

This would imply that if several provers each provide distinct PoReps of the same file then
they are each dedicating unique resources2 to storing the file. It would also imply that a prover
who claims in a single proof to be storing multiple replicas of a file cannot physically deduplicate
its storage. Unfortunately, this security property is impossible to achieve in a classical model
of interactive computation (that does not include timing bounds on communication3), as we
explain next.

Suppose that the PoRep adversary stores the replicas in a string σ. The adversary can then
“sabotage” the replication by using say the first λ bits of σ as a key to encrypt the rest, and store
the transformed string σ′ that includes the λ bit key and ciphertext. Since the adversary can
efficiently decode σ from σ′ it will still pass the protocol with the same success probability (i.e.

2The provers may be storing all the replicas on the same hard-drive, hence PoReps alone do not give a
meaningful guarantee of fault-tolerant data storage.

3

Prover Verifier

τ
r1

π1

r2

π2

t = 0Replica
Generation

Challenge-
response

t = tinit

t = tinit + T

t = tinit + 2T

Figure 1.2: Space-time diagram of the PoRep protocol. Following a phase of length tinit during which the
prover generates a new replica, the verifier repeatedly challenges the prover to produce a PoRep within
a challenge time period length T in order to verify that the prover is still storing the unique replica of
the original data. For this proof system to be sound it is necessary that tinit >> T .

it efficiently decodes σ′ and retrieves σ, and then follows whatever protocol behavior it would
have initially on σ). Indeed, such “scrambling” attacks are impossible to prevent as there is
always a trivially fast way to encode/decode one’s state in a way that destroys the k-replication
format.

Instead, we will need to relax the security model to consider adversaries who are “honest-but-
opportunistic”, meaning they will only employ a malicious strategy if they stand to save more
than some ε cost doing so (measured in storage resources). This security model, called ε-rational
replication, has been formally specified and applied rigorously to analyze the constructions
included in this report [13]. In the context of the Filecoin storage network and blockchain
ecosystem, ε-rational replication captures the ε cost that clients must pay to convince miners
to encode their real data inside PoReps rather than “useless” generated data, and therefore the
degree to which Filecoin subsidizes storage costs.

Proof of space A PoRep is a publicly verifiable proof-of-space (PoS) [12]. A prover that passes
verification in the interactive challenge-reponse protocol for a file D̃ of claimed size |D̃| = N
must be using Ω(N) persistent storage. Moreover, a prover that passes verification in k instances
of this protocol with distinct ids id1, ..., idk and claimed file sizes N1, ..., Nk must be using Ω(M)
space where M =

∑k
i=1Ni. This is implied by ε-rational replication and is in general a weaker

property.

Data preprocessing and data retrievability Finally, a PoRep is a proof-of-retrievability
(PoR) [16] of the underlying data represented by the data tag τD. The type of security guarantee
here depends on the mode of the data preprocessing step. When the data input is preprocessed
using a secret-key the resulting PoRep is a public-coin PoR. In this scenario we can imagine

3Consider a model with network communication round trip bounds and distance between parties. Two servers
claim to be in two different locations and are each storing a replica of the same file. We could use distance
bounding protocols combined with proofs of retrievability to verify the claim [30]

4

the preprocessor is a single client who wants to store (and replicate) data on a server, and
generates the data tag τD to outsource this verification work (i.e. anyone with the tag τD can
verify on behalf of the client). When the preprocessor runs in keyless mode the resulting PoRep
is a publicly-verifiable proof of retrievable commitment (PoRC)4. In this case τD is simply a
binding commitment to the data file D, and the PoRep is a proof that the prover can retrieve
the data D. Any (stateful) verifier that is at one point given the opening of the commitment
can thereafter use the tag to verify PoReps as standard PoRs. This is particularly useful for
a setting in which multiple clients pool their files together and want to receive a single PoRep
for the entire dataset, but they do not mutually trust one another to share a private-key. It
is also appropriate for a dynamic setting where new clients are made aware of the data stored
on the server and wish to verify retrievability without trusting the original client’s private-key
preprocessing.

2 Basic PoRep from Sequential Encodings

The first basic PoRep we describe applies a slow encoding to a file F to transform it into a
format F̃ , which can be quickly decoded back to F . This general approach has been described
before in [1,9,19]. The slow transformation is done in an initialization period “offline”. A verifier
then periodically checks that the server is still storing the encoding F̃ . If the server has deleted
the encoding F̃ then it will not be able to re-derive it quickly enough to respond to challenges
from the verifier during the “online” phase. Furthermore, the encoding can be made unique to a
particular identifier id, so that two the encodings F̃id1 and F̃id2 (called replicas) are independent
and cannot be quickly derived from one another. This way, a server that is only storing one of
the two encodings of the same original file F will fail the online challenges from the verifier for
the missing replica.

Verifiable Delay Encodings The primitive we use to implement slow encodings in our most
basic PoRep is called a verifiable delay encoding (VDE). These will also play a role in our more
advanced constructions. Informally, as described, this is an encoding that is slow to compute
yet fast to decode. More specifically, the encoding requires non-parallelizable sequential work to
evaluate and therefore in theory cannot be computed in shorter than some minimum wall-clock
time. A VDE is a special case of a VDF [9]. Practical examples of VDEs include Sloth [17],
MiMC [3], and a special class of permutation polynomials [9].

The syntax we will use for a VDE is a tuple of three algorithms VDE = {Setup,Enc,Dec}
defined as follows. (Some constructions of VDESetup may require this to be run by a trusted
party, or computed using MPC. The instantiations described above do not).

1. VDE.Setup(t, λ)→ pp is given security parameter λ and delay parameter t produce public
parameters pp. By convention, the public parameters also specify an input space X and
a code space Y. We assume that X is efficiently samplable.

2. VDE.Enc(pp, x)→ y takes an input x ∈ X and produces an output y ∈ Y.

3. VDE.Dec(pp, y)→ x takes an input y ∈ Y and produces an output x ∈ X .
4This primitive is formally defined in [13]. It is similar to a proof of knowledge of a commitment, only with a

public extraction property more similar to PoR. The publicly verifiable Merkle commitment described in [16] is
a simple example of a PoRC

5

2.1 Basic PoRep Construction

In all of the constructions we describe in this report we will skip the description of PoRep.Preproc.
The data is preprocessed in one of the modes described, and we start with the preprocessed
data D̃ and data tag τD. We assume there is an external verification procedure that the ver-
ifier may query on any block di of the file D̃, its position i, and τD, which returns a result
that we denote by Ocheck(di, i, τD) → b ∈ {0, 1}. The construction will use a VDE scheme
{VDE.Setup,VDE.Enc,VDE.Dec} with identical input space and code space over {0, 1}m, as well
as a hash function H : {0, 1}∗ → {0, 1}m modeled as a random oracle (i.e. maps strings of
arbitrary length to strings of length m). For two strings s1, s2 ∈ {0, 1}∗ the notation s1||s2

denotes their concatenation.

PoRep.Setup(λ, T) → pp Run VDE.Setup(T, λ) → pp. This specifies the block length m, and
provides implicit input parameters to VDE.Enc and VDE.Dec.

PoRep.Replicate(id, τD, D̃) → R, aux Parse D̃ as a file of N blocks d1, ..., dN each a string
in {0, 1}m. For each i compute Ri = VDE.Enc(di ⊕ H(id||i)). Output R = (R1, ..., RN) and
aux = N .

PoRep.Extract(id,R)→ D̃ ParseR = (R1, ..., RN) and for each i compute di = VDE.Dec(Ri)⊕
H(id||i). Output D̃ = (d1, ..., dN).

PoRep.Poll(N)→ r For i = 1 to λ randomly sample ri ←R [N]. Output r = (r1, ..., rλ).

PoRep.Prove(R,N, id, r) → π Parse R = (R1, ..., RN) and r = (r1, ..., rλ). Output the proof
π = (Rr1 , ..., Rrλ).

PoRep.Verify(id, τD, r,N, π) → 0/1 Parse the proof π = (π1, ..., πλ) as λ strings in {0, 1}m.
For each i = 1 to λ do:

1. Compute d̂i = VDE.Dec(πi)⊕H(id||ri)

2. Query bi ← Ocheck(d̂i, ri, τD)

If bi = 1 for all i then output 1 (accept), otherwise output 0 (reject).

Instantiation We can instantiate the basic PoRep construction with the Sloth [18] VDE. For a
target polling period of 5 minutes, choosing the block size gives a tradeoff between proof size and
initialization time. With a block size of m = 4096 and time delay T of 10 minutes, replication
of files up to 50KB (N = 100) take under 1 hour and extraction takes under 1 second on 16
parallel cores. With block size m = 256 we can only support files to 320 bytes for replication to
take under 1 hour. If instead we fix the file size (e.g. up to 50KB) but decrease block size by
a factor κ, then we both increase initialization time by a factor κ and decrease proof size by a
factor κ.

6

Data File Replica

D̃1
VDE.Enc(D̃1 ⊕H(id||i)) R1

D̃2
VDE.Enc(D̃2 ⊕H(id||i)) R1

...
...

...

D̃N
VDE.Enc(D̃N ⊕H(id||N)) RN

Figure 2.1: Illustration of PoRep.Replicate in the basic PoRep construction using a VDE.

Proof size The proof size is λm bits. To detect deletion of 1% of the data block with soundness
error 1/3 we would require λ = 100, in which case the proof might as well include the entire
replica (if we support only up to N = 100). To detect deletion of 5% with soundness 1/3 only
requires λ = 20, or 1/5 of the entire file. For 80% we can set λ = 5, or 5% of the file size. In
combination with erasure code during preprocessing, the file may still be perfectly recoverable.
Therefore we still achieve ε-replication. For example, if D is preprocessed with an erasure code
that tolerates arbitrary 20% deletion, then we tradeoff an increase in the replica size by 20% for
a proof size of only 6% of the original file size.

3 Block Chaining Sequential Encodings

The Basic-VDE-PoRep does not scale well for large file sizes. A 1 GB size file with block size of
512 bytes would take over 13 days to replica on a machine with limited parallelism. Increasing
the block size to reduce replication time impacts proof size and is also limited by the message
space of the VDE scheme. VDE schemes like Sloth operate on relatively small input spaces as
larger input spaces are more susceptible to parallelization attacks. The fundamental issue in the
Basic-VDE-PoRep construction is that the VDE (tuned for the polling period delay T) is applied
individually to each block of the file thus allowing a fully parallel attacker to derive the entire
replica within time T whereas it takes a non-parallel prover time TN .

This is not just due to paranoia about massively parallel attacks! Any attacker who uses
only a factor k more parallelism will be able to reduce replication time by a factor k. If the best
adversary can generate replicas a factor k faster then the time to replicate for the honest provers
must be at least a factor k times longer than the polling period. In fact, since the verification
strategy randomly samples only ` blocks to challenge, the adversary only needs ` parallelism to
re-derive the challenged blocks in wall-clock time T .

Block chaining A natural way to reduce the overall replication time while maintaining the
sequential hardness is to chain the encodings of each block, similar to encryption in block
chaining cipher modes. A simple chaining would modify PoRep.Replicate in the Basic-VDE-

7

Enc

D0

R0

H

id

τD

Enc

D1

R1

H

id

τD

Enc

D2

R2

H

id

τD

· · · · · · Enc

Dn

Rn

H

id

τD

· · · · · · Enc

Dn

Rn

H

id

τD

Figure 3.1: Basic-VDE-PoRep in CBC-mode.

PoRep by deriving from each Ri (encoding of block di) a key ki = H(id||Ri) to be used in the
encoding Ri+1 = VDE.Enc(di+1 ⊕ ki) (of block di+1) as shown in Figure 3.1.

Each Ri can still be decoded locally given only Ri−1 as Di = VDE.Dec(Ri ⊕ ki) where
ki = H(id||Ri−1). We would then reduce the time delay T for each call to VDE.Enc such that
T · N is equal to the desired replication time. However, the problem with this basic chaining
method is that it has a smooth time/space tradeoff. An adversarial prover can store only each
kth block (reducing overall storage by a factor k) and yet it can recompute any individual block
with only k calls to VDE.Enc. With sufficient parallelism it can re-derive the entire replica in
time kT instead of NT , and worse yet it can respond to the verifier’s ` random challenges in
time kT with only ` parallelism. As a result to ensure the server is storing at least 1/k fraction
of blocks the replication time must be at least a factor N/k longer than the polling period.

Dependency graphs One way to characterize the issue with the simple cipher block chaining
method is that the dependency graph of the block encodings is not depth robust. Let each block
of the file represent a node in a graph where a directed edge is placed between the ith node
and the jth node if the encoding of the jth block of the file depends on the encoding of the
ith block. The resulting graph is a directed acyclic graph (DAG). By the properties of H and
VDE.Enc the dependencies are cryptographically enforced: if the jth block is dependent on the
ith block then the jth encoding cannot be computed unless the ith encoding is known except
with negligible probability.

Depth robust graphs What is a depth robust graph? An (n, α, β, d) depth robust graph is
a DAG on n nodes with in-degree d such that any αn size subgraph contains a path of length
βn.

Definition 1. A locally navigatable DRG sampling algorithm for an (n, α, β, d)-DRG is a pair
of deterministic algorithms that share a common s-bit seed σ ←R {0, 1}s where |s| = O(n log n)
that operate as follows:

1. DRG.Sample(n, σ)→ G outputs a graph on the node set indexed by integers in [n].

2. DRG.Parents(n, σ, i)→ P outputs a list P ⊆ [n] of the parents of the node at index i ∈ [n]
in the graph Gσ ← DRG.Sample(n, σ).

8

c1

d1

c2

d2

c3

d3

c4

d4

c5

d4

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

Figure 3.2: Illustration of block dependency DAG configurations in cipher block chaining encodings.
On the left is a simple chain (as in the chained Basic-VDE-PoRep) whereas the right depicts a mock
depth robust chaining. For each chained encoding, the ith encoding is derived as Ri ← Enc(ki, di) where
ki = H(id||parents(i)) and parents(i) denotes the set of encodings on nodes j with a directed edge to i.

DRG.Sample(n, σ) runs in time O(n log n) and DRG.Parents(n, σ, i) runs in time O(polylogn).
Finally the graph G is an (n, α, β, d)-DRG with probability 1− negl(n) over σ ←R {0, 1}s.

If the dependency graph is (α, β) depth robust then deleting any αN fraction of the encodings
will contain a dependency path of length βN inside the deleted subgraph, meaning that it will
require at least βN sequential calls to VDE.Enc to re-derive the deleted blocks. On the other
hand, the dependency graph of the cipher block chained Basic-VDE-PoRep is a line, and as
demonstrated by the time/space tradeoff attack described above it is at most (1 − 1/k, k/N)
depth robust for any k < N (as storing only every kth node partitions the deleted set of nodes
into lines of length k).

Pebbling complexity More generally we can consider the pebbling complexity of the depen-
dency graph. This is defined in terms of a game where the player is allowed to place an initial
number of pebbles on nodes of the graph. The game then proceeds in steps where in each step
the player is allowed to place a new pebble on the graph with the restriction that it can only
place a pebble on a node if all of its parents currently have pebbles. The player may also remove
pebbles at any point. The game ends when the players has pebbled all nodes in some target set.
There are various measures of pebbling hardness that have to do with the minimum number of
steps required to pebble the target set from an initial configuration of a given size. The parallel
pebbling complexity of the graph is captured by a similar game with the modification that in any
“round” of the game the player can simultaneously pebble any node whose parent nodes had
pebbles in the previous round, and is hard if from an initial configuration of some maximum size
the adversary requires a minimum number of rounds to pebble the target set. Finally, a random
pebbling game is one where the challenge node is selected randomly and hardness is measured
in terms of the probability a player can win this game from a configuration of some size and
some maximum number of moves/rounds.

Proofs of space Many proofs of space [12, 25, 26] and memory hard functions [14, 15] are
based on iterated collision-resistant hash function computations with hard-to-pebble depen-
dency graphs, called a labeling of the graph. Depth robust graphs were also used for publicly
verifiable proofs of sequential work [21]. The generic approach to constructing a PoS from a
pebbling-hard graph proceeds in two steps: in an “offline” phase the prover commits to the

9

labeling and demonstrates that the labeling is mostly correct (i.e. edge dependencies were re-
spected) by answering random challenges to the commitment, and in an “online” phase the
prover demonstrates that it can retrieve most of the labeling. Our PoRep constructions also fol-
low this structure. Combining the labeling game with sequential encodings results in a smooth
spectrum bridging the two techniques. On one end of the spectrum, large files with very large
block dependency graphs will not need a large time-delay and are therefore nearly equivalent
to proofs of space with data XORed into the labels. On the other end of the spectrum, very
small graphs will not benefit from chaining and are therefore nearly equivalent to the basic VDE
PoRep.

3.1 Depth Robust Chaining of Sequential Encodings

Our new PoRep DRG-PoRep extends the Basic-VDE-PoRep by chaining block dependencies using
a depth robust chaining as described above. Using an (N,α, β, d)-DRG we are able to reduce
the time delay T for each block encoding as N increases, such that the total time NT remains
the same and the polling period is tuned to βTN . A prover that deletes more than an α fraction
of the block encodings will not be able to respond to challenges correctly (and quickly enough)
during the challenge-response period. This achieves α-rational replication and replication time
that is a factor 1/β longer than the polling period. Unfortunately, erasure codes no longer
guarantee that the data is still recoverable from an α fraction of the encodings due to the dense
block dependencies. However, the security can be amplified using stronger DRGs for smaller
α > 0, at the cost of increasing the degree by O(1/α) as well as the replication time relative to
polling period.

Online and offline proofs The protocol separates two kinds of proofs. As a part of the aux
output during the replication the prover generates a proof that the depth robust chaining of the
encodings were “mostly” correct. The verifier cannot check that all the correct dependencies were
enforced as this would not be a compact proof. Instead, the prover derives the entire encoding
(consisting of labels on each node of the graph) and provides the verifier with a compact vector
commitment to these labels. The verifier queries for several randomly sampled nodes of the graph
and challenges the prover to open the commitment to labels on both this node and the labels
on all of its parent nodes. The verifier can then check that the encodings correctly observed the
dependency. This convinces the verifier that a constant fraction of the nodes in the graph are
correct. Because the graph is depth robust, a sufficiently large subgraph of correct nodes is also
depth robust. Actually, we will make this proof non-interactive using the Fiat-Shamir heuristic.
The second “online” proof is a simple proof of retrievable commitment. The verifier simply
challenges for several indices of the prover’s vector commitment to the replica block encodings
and the prover sends back these openings.

3.1.1 DRG-PoRep Construction

PoRep.Replicate(id, τD, D̃)→ R, aux

1. H(id||τD) = σ. This is the seed used to “sample” the DRG graph and “salt” the hash
function.

2. Parse D̃ as data blocks (d1, ..., dN). Run DRGEnc on ~d,m,N, and σ. The output is the
replica R.

10

DRGEnc(~d,m,N, σ){
for i = 1 to N :

(v1, ..., vd)← DRG.Parents(N, σ, i)

ki ← H(σ||cv1 || · · · ||cvd)

ci ← VDE.Enc(ppvde, ki ⊕ di)
R← (c1, ..., cn)

return R}

3. Compute a Merkle commitment5 comR to the replica blocks R.

4. Now use H to non-interactively derive the challenge vector ρ = (ρ1, ..., ρ`1) as ρi =
H(σ||comR||i). These specify a set of challenge nodes Cnodes = (cρ1 , ..., cρ`1). The proof
will provide the labels on the challenge nodes, demonstrate that they were committed to
in comR, and that they are at least locally consistent with their parent labels.

For each i set parents(ρi)← DRG.Parents(N, σ, ρi) and set Cparents(ρi) = (cv1 , ..., cvd) where
{v1, ..., vd} = parents(ρi).

5. Compute Merkle proofs Λnodes that all the challenge node labels Cnodes and Merkle proofs
Λparents that their parent labels Cparents are all consistent with the commitment comR.

6. Output R and aux = comR, C
nodes,Λnodes, C

parents,Λparents.

PoRep.Poll(N)→ r: For i = 1 to `2 randomly sample ri ←R [N]. Output r = (r1, ..., r`2).

PoRep.Prove(R, aux, id, r)→ π: For each ri in the challenge vector ~r = (r1, ..., r`2) derive the
key for the node ri as kri = H(σ||Cparents(ri), i) where R = (c1, ..., cn). Provide Merkle inclusion
proof Λi for each cri , and set Λret = Λ1, ...,Λ`, set ~c = (cr1 , ..., cr`), and set ~k = (kr1 , ..., kr`).

Output the proof containing the Merkle proofs and key/label pairs, π = (Λret,~c,~k).

PoRep.Verify(id, τD, r, aux, π) → b Parse the input aux as a list of values comR, σ, ρ, Cnodes,
Cparents(ρ1),...,Cparents(ρ`1), Λ, Λ1,...,Λ`1 as well as the input π = Λret,~c. Parse π = (Λret,~c,~k).

1. First verify aux.6 Check H(id||τD) = σ and H(σ||comR||i) = ρi for each i = 1 to `1. If
any checks fail reject the proof. Verify the Merkle proof Λnodes on Cnodes. Next, for each i
derive parents(ρi) ← DRG.Parents(N, σ, ρi) and the key kρi = H(σ||Cparents(ρi), i). Check
that di = VDE.Dec(ppvde, ki ⊕ cρi). Query the check oracle b← Ocheck(di, ρi, τD). If b = 0
output 0 and terminate.

2. Second verify the “online” proof π. First verify the Merkle proof Λret for the challenge
vector ~c. Next for each i ∈ [`2] compute di ← VDE.Dec(ppvde, ki⊕cri) and query the oracle
Ocheck(di, ri, τD) If any Merkle proof verifications or oracle queries fail reject the proof.

5More generally, Merkle commitments can be replaced with any vector commitment [10,20].
6In the interactive protocol, as long as the verifier is stateful then the input aux only needs to be verified the

first time the verifier runs PoRep.Verify on its first poll as it can remember the verification result for subsequent
polls.

11

Proof sizes There are two types of proofs, the “offline” non-interactive proof contained in
aux and the “online” proofs output by PoRep.Prove. The proof contained in aux is much larger,
although it is only sent once to each verifier. There are two security parameters, `1 is a security
parameter determining the number of queries in the offline proof, and `2 is a security parameter
determining the number of queries in the online proof. The proof size is roughly (d`1 +`2)×m×
logN bits because the responses to the `1 challenge queries include the d parents of each challenge
node whereas the responses to the `2 queries do not. Vector commitments with constant size or
batched openings, as opposed to Merkle commitments, would reduce the factor logN overhead.
As aux is non-interactive the soundness error needs to be exponentially small, therefore we set
`1 = λ/− log(1− α). For example to achieve 80-bit security and α = 0.20 this is `1 = 825.

Relaxing soundness: interaction and time/space tradeoffs The reason why in general
we need to set `1 to be large is that otherwise the prover can brute force a favorable challenge in
the non-interactive proof. There are two ways to improve on this. First, we could get rid of the
non-interactive proof in aux and required the verifier to challenge the prover for a fresh aux proof
on their first interaction. Second, the non-interactive challenge “grinding” attack requires the
prover to rerun replication many times in expectation. As this is already a memory/sequentially
hard computation (taking at least around 10-60 min), we could incorporate this into the rational
security model. The question is how much extra replication work a malicious prover is willing to
do in order to save a fraction of space during the online phase. If we can just achieve soundness
1/1000 instead of 2−80 then even a massively parallelized prover will need to grind in expectation
for 3.47 days. For this soundness level we can set `1 ≈ 100.

Compressing proofs with SNARGs We can further compress the size of the aux proof
by using SNARGs, or any other form of succinct proofs. The prover computes a SNARG over
the circuit PoRep.Verify with the proof π as a witness. To optimize the performance of this
SNARG it would be important to choose instantiations of vector commitments, slow encodings,
and collision resistant hash functions that minimize the multiplicative complexity of checking
inclusion proofs and decoding. If the VDE is expensive to implement in a SNARG circuit, then
just eliminating the labels on parent nodes already substantially decreases the proof size.

The Jubjub7 Pedersen hash over BLS12-381 is an attractive candidate as it achieves a circuit
complexity of only 4 multiplication gates per input bit (61,440 gates per Merkle commitment
opening with a 32GB file). This can be used to instantiate both Merkle commitments and the
function H. If the VDE is instantiated with Sloth++ [9] over the scalar field of BLS12-381,
then verification of a 5 min delay involves roughly 6 million multiplication gates. This is due
to the fact that Sloth++ iterates a square-root round function 30 million times. However, with
a 1GB file the delay T will be reduced drastically, e.g. with β = 1/100 it will require only
3 iterations of the Sloth++ round function. Furthermore, if a longer delay (on the order of 5
minutes) is necessary then we can instead use a VDE based on inverting permutation polynomials
over Fp described in [9]. For sequential security this would require tuning the polling period
to the time it would take a prover running on an industry standard GPU as the polynomial
GCD computations do admit some parallelism. The total circuit size for verifying aux with
m = 256, N = 230, d = 20, and `1 = 100 is approximately 124 million gates, and would take
approximately 5 hours to compute on a single-threaded 2.4 GHz Intel E7-8870 CPU [8]. With

7https://z.cash/technology/jubjub.html

12

https://z.cash/technology/jubjub.html

modest parallelism (e.g. 16 threads) this can easily be reduced to below the replication time.

3.2 Stacked DRG PoRep

The DRG-PoRep construction improved significantly on replication time while maintaining ter-
rific extraction efficiency. However, it compromised on ε-rational security and the tightness
of the proof of space. In order to achieve ε-arbitrarily small, we required DRG graphs that
were robust in ε-fraction subgraphs. Not only does this degrade the practicality of the DRG
construction, it also worsens the gap between polling and replication time, which necessarily
increases as O(1/ε). Thus, in some sense we cheated, as the Basic-PoRep achieves arbitrarily
small ε-rational security for a fixed replication time. In our final construction we show how
to overcome this at the expense of a slower extraction time. Our basic idea is to layer DRGs,
iterating the DRG-PoRep construction so that each layer “re-encodes” the previous layer. In
our first variant, we add additional edge dependencies between the layers that are used in the
encoding. These edge dependencies are the edges of a bipartite expander graph between the
layers. A bipartite expander graph has the property that every constant size subset of sinks
is connected to a relatively large subset of sources. Unfortunately, by adding these additional
edge dependencies between the layers they can no longer be decoded. Therefore, in this variant
we instead use the first `− 1 layers to deterministically derive the keys that are used to encode
the data input on the last layer. Data extraction is as expensive as data replication because it
requires re-deriving the keys in the same way.

As we will show, this has the effect of amplifying the DRG security by exponentially blowing
up the dependencies between nodes on the last level and nodes on the first level. Deletion of a
small ε fraction of node labels on the last level will require re-derivation of nearly all the node
labels on the first level (or even first several levels). Therefore, a relatively weak (constant)
depth-robustness on the first few levels is all that is necessary to guarantee parallel pebbling
hardness. In particular, we are able to prove that an (n, 0.80n,Ω(n)) DRG is sufficient, i.e.
deletion of 20% of nodes leaves a high depth graph on the 80% remaining nodes, regardless of
the value of ε. Moreover, the number of levels required to achieve this is only O(log(1/ε)). This
results in a factor log(1/ε) gap between polling and replication time as opposed to the previous
O(1/ε) gap.

Tight PoS In fact, this construction also gives the first concretely practical (and provably
secure) tight proof of space, outperforming [2, 12, 25, 26] in its ability to achieve arbitrarily
tight proofs of space with fixed degree graphs. The only other tight PoS is Pietrzak’s DRG
construction [25] and requires special DRGs of degree O(1/ε) where ε is the space gap. A PoS
based on pebbling a graph of degree O(1/ε) results in a total proof size of O(1/ε2). Already by
stacking O(log(1/ε)) fixed degree DRGs we are able to achieve proof complexity O(1/ε·log(1/ε)).
However, we are able to go even further and show that the total number of queries over all layers
can be kept at O(1/δ), achieving proof complexity O(1/ε). This is in fact the optimal proof
complexity for the (generic) pebbling-based PoS with at most an ε space gap. If the prover
claims to be storing n pebbles and the proof queries less than 1/ε then a random deletion of an
ε fraction of these pebbles evades detection with probability at least (1− ε)1/ε ≈ 1/e. The same
applies if a random ε fraction of the pebbles the prover claims to be storing are red (i.e. errors).

13

Data extraction and zig-zag As we mentioned, the downside of our first variant is the data
extraction time, which is now as expensive as data replication. Our second variant fixes this
with a simple tweak. Instead of adding edge dependencies between the layers, we add the edges
of a constant degree expander graph in each layer so that every layer is both depth-robust and
has high “expansion”. A non-bipartite expander graph has the property that the boundary of
every constant size subset, i.e. the number of neighboring nodes, is relatively large. Technically,
the graph we construct in each layer is an undirected expander, meaning that the union of
the dependencies and targets of any subset in our DAG is large. However, by alternating
the direction of the edges between layers, forming a “zig-zag”, we are able to show that the
dependencies between layers expand. Now the only edges between layers are between nodes at
the same index, and the label on each node encodes the label on the node at the same index in
the previous level. The dependencies used for keys are all contained in the same layer; thus, the
labels in any layer can be used to recover the labels in the preceding layer. Furthermore, the
decoding step can be done in parallel just as in DRG-PoRep.

It is easy to see that without alternative the direction of the edges between layers this
construction would fail to be a tight proof of space because the topologically last εn nodes in a
layer would only depend on the topologically last εn nodes in the previous layer. Moreover, if
the prover stores the labels on the topologically first (1 − ε)n nodes it can quickly recover the
labels on the topologically first (1− ε)n nodes in the preceding level, allowing it to recover the
missing εn labels as well in parallel-time O(εn). This is no more secure than DRG-PoRep and
cannot tolerate arbitrarily small ε for a fixed polling period.

Related techniques Pietrzak [25] also proposed using depth robust graphs for proofs of
replication and presented a slightly different construction to DRG-PoRep that partially resolves
the issues of space-tightness in an elegant way. The construction uses the recent [5] DRGs which
are (n, α, β,O(log n/ε))-depth robust for all (α, β) such that 1 − α + β ≥ 1 − ε. Instead of
embedding the data on all nodes of the graph, the construction generates a graph on 4n nodes,
but only encodes the data on the topologically last n nodes. The replication procedure still
generates a labelling of the entire graph upon which the last n block encodings are dependent,
but only outputs the labels on the last n nodes. This is similar in spirit to our idea of layering
DRGs as it divides the graph into 4 layers by depth, hower here a single DRG is defined over
all the nodes. Pietrzak shows that a prover who deletes an ε′ fraction of the labels on the
last n nodes will not be able to re-derive them in fewer than n sequential steps. The value ε′

can be made arbitrarily small however ε < ε′/4, so the degree of the graph must increase as
1/ε′. Furthermore, although the graphs in [5] achieve asymptotic efficiency and are incredibly
intriguing from a theoretical perspective, they still do not have concretely practical degree.
(As a side point, Pietrzak’s construction does not incorporate delay encodings into the DRG
PoRep construction. If only SHA256 is called for each labeling this means that only graphs of
a minimum size over 1 billion nodes can achieve a 10 min delay. SHA256 can be intentionally
slowed with iterations, but then extraction becomes as inefficient as the replica generation).

Ren and Devadas [26] construct a proof of space from stacked bipartite expander graphs.
Our construction can be viewed in some sense as a merger of this technique with DRGs, however
it requires a very new and more involved analysis. Their construction can easily be modified
into a “proof of replication” as well by encoding data only on the last level (similar to Pietrzak’s
DRG construction and our first variant of stacked DRGs). Specifically, the labels on all levels
V1, ..., Vr−1 are first derived and then each label `i on the ith node of the last level Lr is replaced

14

with VDE.Enc(`i ⊕ di) where di is the ith block of data. The data extraction is as inefficient as
replica generation because it must be extracted by re-running the computation from the start
to derive the labels `i and then decoding each block. However, their construction would also
not satisfy our stronger definition for PoRep security (with a time bounded adversary) as it is
not secure against parallel attacks. Furthermore, the space gap is quite weak (i.e. it cannot
beat ε = 1/2 according to their analysis). Our construction is a strict improvement as it is both
space-tight and secure against parallel attacks.

CBC layering Finally, we draw a comparison to a PoRep proposal hinted at in [1] which
suggested iterating CBC encryption over the data with a permutation interlaced between layers.
This is the direct inspiration for our construction, and it is instructive to observe the pitfalls of
implementing this approach with CBC-mode encryption and why they are resolved when using
a depth robust chaining mode instead.

The CBC-layering method is as follows. Let Π denote a random permutation on the block
indices of the file, i.e. Π : [N] → [N]. (In practice Π can be represented compactly using a
Feistel cipher and a random seed to generate the Feistel round keys). Let CBCEnc(id,D) denote
the Basic-VDE-PoRep in CBC-mode as illustrated in Figure 3.1. Additionally for any length
N input vector ~x define the function ShuffleΠ(x1, ..., xN) = (xΠ(1), ..., xΠ(N)). Starting with the
plaintext blocks D = d1, ..., dN , compute the encoding c1, ..., cN ← CBCEnc(id,D) and set V0 =
(c1, ..., cN). Next shuffle and re-encode the blocks of V0 so that V1 = CBCEnc(id,ShuffleΠ(V0).
Continue iterating the process so that Vi = CBCEnc(id,ShuffleΠ(Vi−1)). Output the last layer
V` as the replica encoding R. Extraction can be run in the reverse direction, with a factor k
parallel speedup on k parallel processors.

There are two main issues with this approach:

1. It is hard to verify that the prover maintains the edge dependencies (i.e. computes the
CBC encoding correctly). If the prover cheats on only a 1/

√
N fraction of edges in each

level then it cuts the sequential work by a factor
√
N and the probability of catching the

prover with only a small number of queries is very small. Basically this is for the same
reason that a hash chain is not a publicly verifiable proof of sequential work8 (unless we
use SNARGs over a circuit of size N`, which would be impractical for large N).

2. The prover could use the time/space tradeoff attack on CBC-mode encodings to storing
only ε/` fraction of the block labels on each level, for total space storage εN and it can
re-derive any block label on the last level in `2/ε sequential steps. For fixed polling period
of 5 min, in order to catch an adversary using εN storage ` must be sufficiently large so
that `2/ε steps (i.e. calls to VDE.Enc) must take at least 5 min. As each call therefore
takes 5ε/`2 min it implies that the total replication time takes 5εN/` minutes. Let ε = 1/2,
N = 230 (16GB file), and consider two cases. If N/` > 211 then replication takes 3.5 days.
On the other hand if ` > N/211 then `N = N2/211 = 249. Even if each call to VDE.Enc
on a 16 byte block is reduce to 1 cycle on a 2 GHz machine, 249 cycles still takes 3 days.9

8In fact, MMV11 [22] use depth robust graphs for the very purpose of obtaining publicly verifiable proofs of
sequential work.

9The attack is much worse when the permutation is not applied between layers. For any `, if the adversary
stores εN/` evenly spaced columns of block labels for total space εN then it is easy to see that the adversary can
(with unlimited parallelism) recompute all the labels on the last level in 2`/ε) parallel steps by deriving blocks
along diagonals (lower left to upper right), deriving a block in the next level as soon as its dependencies in the

15

Depth robust layering Using a depth robust chaining rather than CBC on each level gets rid
of both of these issues. It would be nice to prove security just from permutations between layers,
however our analysis relies heavily on the additional expander edges instead of permutations.
Intuitively, the permutations between layers would prevent the attacker from finding a depth
reducing set of nodes whose dependencies in all previous layers also belong to a depth reducing
set.

Expander construction We use the randomized construction of bipartite expander graphs
originally due to Chung [11]. This samples the edges of the graph using a random permutation.
More precisely, the edges of a d-regular bipartite expander on 2n vertices are defined by con-
necting the dn outgoing edges of the sources to the dn incoming edges of the sinks via a random
permutation Π : [d]× [n]→ [d]× [n]. That is, the ith source is connected to the jth sink if there
is some k1, k2 ∈ [d] such that Π(k1, i) = (k2, j). This has been shown to result in a bipartite
expander with overwhelming probability in n [7, 26, 28]. Our construction uses 8-regular bipar-
tite graphs constructed in this way. We also use this to construct an undirected non-bipartite
expander graph by treating the N nodes as both the targets and the sinks, defining the edge
(i, j) if and only if there exists k1, k2 ∈ [8] such that either Π(k1, i) = (k2, j) or Π(k1, j) = (k2, i).
We will revisit expander graphs in more depth in our formal analysis section.

Number of layers and degree In the protocol description we set the number of layers to a
parameter L = 10. Based on our analysis, using a degree d = 8 expander graph and targeting
ε = 1% then we can safely set L = 10. There are two options for targeting smaller ε. One is
to increase the degree d, but the other is to increase the number of layers. In general, for fixed
expander degree d = 8 the number of required layers increases as O(log(1/ε)) as ε→ 0. This is
the better option in our opinion. Unless the file is so large that the time for each VDE.Enc call
is optimally small (e.g. a single call to AES, or 20 cycles on an Intel CPU with AES-NI), as
we increase the layers we can still maintain the same initialization time by lowering the delay
parameter of each block encoding. Importantly, the difference between replication time and the
polling period remains the same. We are also able to achieve constant proof complexity as we
increase the number of layers. The number of queries to the vector commitment of the final
layer is O(1/ε), but we can reduce this exponentially (i.e. by a multiplicative factor) between
layers. Increasing the degree on the other hand increases the proof size.

3.2.1 Stacked-DRG-PoRep

Our presentation of the construction follows the second “zig-zag” variant.
As before, H is a random oracle H : {0, 1}∗ → {0, 1}m and Π : {0, 1}λ × [8] × [N] →

[8]× [N] is a random permutation oracle where for each seed σ ←R {0, 1}λ the function Π(σ, ·) is
computationally close to a random permutation of [8]×[N], whereN = poly(λ). AsN = poly(λ),
Π can be realized using a cryptographic PRG to generate Θ(N logN) pseudorandom bits from
the seed σ in order to sample a random permutation, however in practice it is better if both Π
and Π−1 can be evaluated more efficiently, i.e. in polylog(N) time and space.

previous level are available. Therefore, to catch an adversary that is using only εN storage, it is necessary to set
the polling period T ≤ 2`/ε, which implies that the total replica generation time is `N ≥ εTN/2, i.e. a factor
εN/2 longer than the polling period. If the polling period is 5 minutes, ε = 1/2, and N = 212 blocks this already
takes 3.5 days.

16

Π can be instantiated using a Feistel cipher with keys derived pseudorandomly from σ. If 8N
is not an even power of 2, then we can use a standard cycle-walking technique. find the smallest
k such that 8N ∈ [22k−1, 22k] and implement a Feistel cipher F over 2k-bit block size. On each
input x ∈ [8N] iterate F (x) until reaching the first output that is an integer in the range [8N].
The inverse permutation Π runs the inverse Feistel cipher, employing the same technique. If y
is the first integer in [8N] output by iterating F on x then it is easy to see that x will be the
first integer in [8N] output by iterating F−1 on y.

In what follows, DAG.Enc is the encoding subroutine DRG.Enc called by PoRep.Replicate
in the DRG-PoRep construction, but replacing the function DRG.Parents with a new function
DAG.Parents. This new function calls DRG.Parents but also adds “expander” edges. Furthermore,
there is an “even” and “odd” mode of selecting the expander edges. The expander edges added
in the odd mode are equivalent to reversing the edges of the even mode and renumbering the
nodes in the reverse direction. That is, there is a directed edge (i, j) in the even mode graph
if and only if there is a directed edge (N − j + 1, N − i + 1) in the even mode graph. The
DRG edges are sampled the same way in both graphs. DAG.Enc(~x,m,N, σ, b) makes calls to
DAG.Parents(N, σ, i, b) for i ∈ [N]. In pseudocode, the function DAG.Parents operates as follows:

DAG.Parents(N, σ, i, b){
V := {v1, ..., vd} ← DRG.Parents(N, σ, i)

W := ∅
for k = 1 to 8 :

case b = 0 :

(j, k′)← Π(σ, (i, k)); (j′, k′′)← Π−1(σ, (i, k))

if j < i then W := W ∪ {j}
if j′ < i then W := W ∪ {j′}

case b = 1 :

(j, k′)← Π(σ, (N − i+ 1, k)); (j′, k′′)← Π−1(σ, (N − i+ 1, k))

if N − j + 1 < i then W := W ∪ {N − j + 1}
if N − j′ + 1 < i then W := W ∪ {N − j′ + 1}

return W ∪ V }

PoRep.Setup(λ, κ, T) → pp: The setup obtains as input security parameters λ, κ, as well as
the delay parameter T and runs ppvde ← VDE.Setup(1λ). This determines a block size m and
M = {0, 1}m. The setup then runs ppvc ← VC.Setup(1λ, Nmax,M) where Nmax is the maximum
supported data length. Finally the setup also defines two integers `1 = `1(λ) and `2 = `2(κ).
The setup outputs pp = (ppvde, ppvc,m, `1, `2). We fix the number of layers L in the construction.

PoRep.Replicate(id, τD, D̃)→ R, aux: The input to the replicate procedure is the preprocessed
data file D̃ consisting of N blocks of size m, along with data tag τD and replica identifier id.

1. Apply random oracle H(id||τD) = σ.

2. Parse D̃ as data blocks ~d = (d1, ..., dN), each di ∈ {0, 1}m.

17

Initialize ~x = (x1, ..., xN) consisting of N data blocks where initially xi = di. Define
swap(~x) = (xN , ..., x1), which reverses the indexing of the elements. Iterate DAG.Enc L
times over ~x as follows:

StackedDRGEnc(~d,m,N, σ){
for i = 1 to L :

~x∗ := swap(~x)

~x := DAG.Enc(~x∗,m, σ, i % 2)

Φi ← VC.Com(ppvc, ~x)

R← ~x

Φ← VC.Com(ppvc,Φ1, ...,Φ`)

return R,Φ}

When implementing StackedDRGEnc, the values xi can be updated in place, so only a
single buffer of size N blocks is needed. Some extra storage is needed to store the vec-
tor commitment, however this can be made relatively small using time/space tradeoffs
discussed below.

3. Use H to derive a challenge vector for each jth level as ρ(j) = (ρ1,j , ..., ρ`1,j) where ρi,j =
H(id||Φ||i||j).

4. Rerun10 StackedDRGEnc and on the jth iteration let (c′1, ..., c
′
N) denote the output labels

on the jth inputs (c1, ..., cn).

Compute vector commitment opening proofs on the indices specified by the challenges ρ(j):

(a) Set Cnodes
j = (cρ1,j , ..., cρ`1,j).

(b) For each i set Cparents
j (ρi,j) = (c′v1 , ..., c

′
vd

) where {v1, ..., vd} ← DAG.Parents(m,σ, ρi,j , i
mod 2). Let parents(ρi,j) = (v1, ..., vd).

(c) Set Cpred
j = (cρ1,j , ..., cρ`1,j).

Let Cnodes = (Cnodes
1 , ..., Cnodes

L), and Cparents = {Cparents
j (ρi,j)}j∈[L],i∈[`1], and Cpred =

(Cpred
1 , ..., Cpred

L).

5. Compute vector commitment opening proofs on the indices specified by the challenges:

for j = 1 to L :

Λnodes
j ← VC.Open(ppvc, C

nodes
j ,Φj , ρ)

Λpred
j ← VC.Open(ppvc, C

pred
j ,Φj , ρ)

for i = 1 to `1 :

Λparents
i,j ← VC.Open(ppvc, C

parents(ρi,j), parents(ρi,j))

6. Output R, and
aux = Φ1, ..,ΦL, C

nodes, Cparents, Cpred, {Λnodes
j }j∈[L], {Λ

pred
j }j∈[L], {Λ

parents
i,j }j∈[L],i∈[`1].

10The prover can of course choose between using a larger buffer (up to NL) and re-running the StackedDRGEnc
computation once.

18

PoRep.Poll(N)→ r: For i = 1 to `2 randomly sample ri ←R [N]. Output r = (r1, ..., r`2).

PoRep.Prove(R, aux, id, r) → π: The input is id, the aux output of replicate, challenge vec-
tor ~r = (r1, ..., r`2), and the replica R = (c1, ..., cN). Set ~c = (cr1 , ..., cr`2). Compute Λ ←
VC.Open(ppvc, comR,~c, ~r). Output π = Λret,~c.

PoRep.Verify(id, τD, r, aux, π): Parse the input aux as Φ1, ...,ΦL, Cnodes, Cparents, Cpred, {Λnodes
j },

{Λpred
j }, {Λparents

i,j }. Parse π = Λret,~c.

1. (This is only done the first time, otherwise skip to 2). Derive H(id||τD) = σ, and ρi,j =
H(id||Φ||i||j) for each i ∈ [`1] and j ∈ [L]. Derive for each i, j the set parents(ρi,j) ←
DAG.Parents(m,σ, ρi,j). Run verifications of all the vector commitment openings on Cnodes,
Cparents, and Cpred.

2. Second verify the proof π. Compute b← VC.Verify(ppvc,~c, ~r,Λret). Output b.

Vector commitment overhead If the prover uses a Merkle tree as its vector commitment
then it will either need to additionally store the hashes on internal Merkle nodes or recompute
them on the fly. At first glance this may appear to destroy the tightness of the PoS because
storing the Merkle tree is certainly not a PoS. However, because the time/space tradeoff in
storing this tree is so smooth the honest prover can delete the hashes on nodes on the first k
levels of the tree to save a factor 2k space and re-derive all hashes along a Merkle path by reading
at most 2k nodes and computing at most 2k hashes. If k = 7 this is less than a 1% overhead in
space, and requires at most 128 additional hashes and reads. Furthermore, as remarked in [25]
these 2k reads are sequential memory reads, which in practice are inexpensive compared to the
random reads for challenge labels. Similar time/space tradeoffs are possible with RSA vector
commitments.

Reducing number of challenges In the description of the protocol above we set the number
of non-interactive challenges `1 to be the same at every level, for a total of `1L challenges. Since
`1 = O(λ/ε) to achieve ε-rational-security this results in proof size of O(λL/ε). However, we
can actually decrease the number of challenges between levels by a multiplicative factor, and
provided that the number of challenges remains above a certain threshold. In particular, letting

`
(i)
1 denote the number of challenges for the ith level, we prove security with `1 = `

(L)
1 = O(λ/ε)

and `
(i)
1 = min(20, (2/3)`

(i+1)
1), although the analysis could be tightened for better parameters.

The total number of challenges is therefore O(λ/ε) because
∑L

i=1 `
(i)
1 ≤ 3`1.

Data extraction The data extraction is less efficient compared to DRG-PoRep (which coincide
with L = 1). There is a still a large asymmetry between the replication time and data extraction
due to the asymmetry of VDE.Enc and VDE.Dec, however this difference is reduced as the file
size grows larger. The extraction can still be highly parallelized allowing for a large speedup
given sufficiently many parallel cores.

19

Proof size estimates The online proof size is comparable to the proof size of the DRG-PoRep,
although now that an arbitrarily small ε-rational replication is actually achievable (also ε space
gap) it will be necessary to set `2 appropriately in the online proof. As in Basic-DRG-PoRep,
to verify that the prover can still retrieve an ε fraction of the commitment with soundness µ
requires `2 > log(µ)/ log(1− ε). For example, if ε = 0.01 and µ = 1/3 then `2 = 109. With 16-
byte block sizes this is 1.6KB. (Considering the file may be up to terabytes in size this is highly
reasonable). A SNARG proof can also be used to compress the online proof size, and in this
case would have multiplicative complexity around 10 million gates using a Merkle commitments
with the Jubjub pedersen hash, and can be generated in 1.5 minutes on 16 parallel cores.

The non-interactive proof included in aux is now somewhat larger than in DRG-PoRep because
of the increase in levels, i.e. it is a factor L = O(log(1/ε)) larger without considering the
optimization of reducing the number of challenges between levels as described above. When
applying this optimization, then asymptotically it is only O(1/ε) as ε → 0. This can still be
compressed with SNARGs, but now has a larger circuit complexity as well and will thus take
longer to compute. Without using SNARGs and instantiating the vector commitments with
RSA vector commitments the bottleneck in the proof size is the labels of the challenges. Let
`∗1 = max(20L, 3`1). The proof size is approximately `∗1 · d ·m bits where m is the block size
and `1 = O(λ/ε). Concretely, for soundness 2−8 and ε = 0.03 then according to our analysis
we can set `1 = 3/0.01 = 300 and L = 10 for total `∗1 = 900. (This soundness level makes the
assumption that any rational attacker will not repeat its initialization more than 28 times in
order to save ε = 0.02 space). With m = 128 and d = 13 = 5 + 8 this results in a proof size of
approximately 187 KB, independent of the data input size. This is still reasonable consider the
data input sizes could range up to gigabytes or terabytes.

One observation is that the edges of the DRG can tolerate more error than the expander
edges between layers given a suitably strong DRG construction. For example, if the DRG is
depth robust in 70% subgraphs and at most 10% of the nodes in the graph contain errors, then a
subgraph on 80% of the nodes will still be depth robust. On the other hand, if only an ε fraction
of the dependencies between levels (i.e. the predecessors) are enforced then ε-rationality takes a
direct hit. Likewise, the expander edges are what guarantee expansion of dependencies between
levels. Therefore, we could reduce the proof size by adjusting the number of queries checking
the DRG edges vs the expander edges. Reducing this can makes a significant difference as each
time we check the DRG edges we need to open d labels.

4 Instantiating Depth Robust Graphs

DRG-PoRep requires an (n, ε, δ, d) DRG where ε, δ < 1 and d ∈ polylog(n). In general for
performance we want to minimize ε and d while maximizing δ. Recall that the value of ε
determines the ε-rational-security achievable, and space gap of the construction as proof of space.
The implication of a larger ε is that the erasure code will have to tolerate up to an ε fraction
deletion of the data, which will require an erasure code blowup factor of r = 1/(1− ε) (note that
r < 2 for ε < 1/2). The degree impacts the PoRep proof size and verification complexity, which
is O(λd). On the other hand, Stacked-DRG-PoRep only requires an (n, 0.80, β, d) DRG for some
constant β and degree d.

20

Explicit Depth Robust Graphs Erdős et. al. [24] showed how to construct DRGs explicitly
from extreme constant-degree bipartite expander graphs. Using their construction, one can
obtain an (n, α, β, c log n) DRG on n nodes for particular constants, e.g. α = 0.99 and β = 0.1,
and sufficiently large n. The constant factor c depends on the degree of the bipartite expander
graphs used in the iterated construction. While explicit constructions of these graphs exist [23],
they are complex and have either large constant degree or only achieve the requisite expansion
properties for a significantly large number of nodes. Mahmoody et. al. [22] use denser bipartite
expander graphs to construct for any ε < 1 a DRG family that is (n, α, α − ε, c log2 n) depth
robust for all α < 1. Again, instantiating this construction with explicit expanders will result in
graphs that have an impractically large degree. There is a new construction by Alwen et. al. [5]
that improves asymptotically on MMV, but not concretely.

Probabilistic Constructions If we compromise on explicit constructions then we can in-
stead use probabilistic methods to sample much simpler graphs with more practical concrete
parameters that satisfy the desired depth robustness property with high probability. Intuitively,
since random graphs have good expansion properties in expectation, we can replace the explicit
expanders used inside the DRG constructions with randomly sampled graphs instead. Alwen et.
al. [4] proposed and analyzed a more direct probabilistic DRG sampling algorithm that outputs
a (n, 1−α/ log n, β, 2) DRG on n nodes with failure probability negligible in n. Their construc-
tion can be easily modified to output a (n′, 1 − α, β, c log n′) DRG on n′ = O(n/ log n) nodes
for some fixed constant c. Unfortunately, their analysis only shows that the output graph is a
DRG with good probability for very high values of 1−α. On the other hand they provide strong
empirical evidence that the output graph retains depth robustness for much smaller subgraphs
than analyzed theoretically, and thus provides hope that a tighter analysis would yield much
better values of α (and even β).

4.1 Bucket Sampling

The starting point of our DRG sampling algorithm is the algorithm of Alwen et. al. [4], which
produces a degree-2. The algorithm is extraordinarily simple. It is a small tweak on a random
DAG, sampling d edges for each node at index v randomly from the preceding nodes at indices
u < v, but biasing the selection towards nodes that are closer to v.

The construction operates on nodes with integer indices in [n]. First, a directed edge connects
each node u to its successor u + 1. Next, let Bi = {(u, v) : 2i−1 ≤ |v − u|} where u, v ∈ [n] are
the integer indices of nodes u and v respectively. For a given node v, let Bi(v) denote the set
of all u′ < v such that (u′, v) ∈ Bi, i.e. it contains the nodes u that are within a “distance” in
the range [2i−1, 2i] from v. For each node v, a bucket Bi with i ≤ log2v is selected uniformly
at random and then finally a random node u ←R Bi is selected. The edge (u, v) is added to the
graph.

21

BucketSample[n]{
V := [n]; E := ∅
for v = 2, ..., n :

E := E ∪ {(v − 1, v)}
i←R {1, ..., log2 v}; u←R Bi(v)

E := E ∪ {(u, v)}
return(V,E)}

BucketSample[n,m]{
(V,E)← BucketSample[nm]

W := [n]; E′ := ∅
for(i, j) ∈ E :

ui ← i % n; uj ← j % n

E′ := E′ ∪ {(ui, uj)}
return(W,E′)}

This construction, denoted BucketSample[n], outputs a graph that is asymptotically block
depth robust with overwhelming probability. Furthermore, if the sampling is fixed by a seed σ to
a pseudorandom generator then BucketSample[n] is both deterministic and locally navigatable.
The function DRG.Parents(n, σ, v) is naturally defined by the construction, which would use the
seed σ to sample the parents of node v. The definition of block depth robustness is as follows.

Definition 2 (ABH17). A (n, α, β,m, d) block depth robust graph is directed acyclic graph G
with d-regular indegree on n nodes indexed by integers in [n] such that if any set S of size (1−α)n
and its left neighborhood set Dm(S) = {x ∈ G : ∃u ∈ Ss.t.0 ≤ u−x ≤ m} are removed, then the
graph G \Dm(S) contains a path of length at least βn.

The bucket sampling algorithm of Alwen et. al. [4] outputs a (n, 1 − c1/ log n, β, c2 log n, 2)
block depth robust graph with failure probability negligible in n. Note that (n, α, β,m, d) block
depth robustness is only possible for m(1−α) < 1−β, so the bucket sampling algorithm outputs
a graph whose block depth robustness is within a constant factor (i.e., (1 − β)/(c1c2)) of the
optimal. According to the concrete lower bounds on parameters proved in their analysis, for β =
0.03 they get m(1−α) > 160·2.43×10−4 > 0.038, which is within a factor 25.5 of optimal. Next,
we show how to use the block depth robust BucketSample[n] construction to construct larger
degree DAGs with better depth robustness. The construction BucketSample[n,m] outputs a
graph on n nodes of degree m that is a “factor” m more depth robust, i.e. improves (n, 1−α, β, 2)
depth robustness to (n, 1− αm, β,m+ 1) depth robustness.

“Metagraph” construction Suppose we are given an algorithm that for any (sufficiently
large) n outputs a graph that is (n, 1 − α, β,m, d) block depth robust. We construct a new
graph G on nodes in [n] of degree dm as follows. First construct a graph G′ on nodes in [nm].
We define the graph G such that there is a directed edge from node i to node j if and only if G′

contains a directed edge (u, v) for some u ∈ [(i− 1)m+ 1, i ·m] and v ∈ [(j − 1)m+ 1, j ·m]. It
is easy to see that if G′ has in-degree d then the graph G has in-degree at most dm. Following
the terminology of Alwen et. al., we call G the metagraph of G′, which can also notate as
G = G′m. Using the underlying DRG construction BucketSample[n] the corresponding metagraph
construction BucketSample[n,m] actually has degree at most m+1 because one of the two edges
is to the immediate predecessor.

We prove the following lemma, which essentially says that G inherits the absolute depth
robustness of G′ except now on a vertex set of 1/m the size.

Lemma 1. If G is an (mn, 1 − α, β,m, d) block depth robust robust graph then its meta graph
Gm is (n, 1− αm, β, dm) depth robust.

22

Proof. Denote by Bi the interval [(i − 1)m + 1, i ·m] of nodes in G. Let B = {B1, ..., Bn}. As
noted in the graph construction, each node of the meta graph Gm corresponds to one of the
intervals Bi ∈ B, and has degree at most dm. Consider removing at most e = αmn nodes
from Gm. This corresponds to removing at most e of the intervals in B from G. By the block
depth robustness of G, since e = αmn then the remaining set of nodes in G contains a path of
length βmn. Any path of length βmn nodes in G must intersect at least dβne ≥ βn intervals
in B because a path intersecting at most k < βn intervals of length m would contain at most
km < βmn nodes. This implies that there remains a path of length at least βn in the meta
graph Gm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·106

0

2

4

·105

e

d

BucketSample[220, 1]

BucketSample[220, 5]

BucketSample[220, 10]

BucketSample[220, 20]

Figure 4.1: Results of the attacks against BucketSample[n,m] for m = 1, 5, 10 and n = 220.
We plot on the y-axis for each value of e < n on the x-axis the smallest depth among any
of the subgraphs of size n − e that any of the attacks were able to find. For example, with
BucketSample[n, 5] the attacks could not locate any subgraph on 70% of the nodes that had
depth below n/4. With BucketSample[n, 20] the best attack on 10% subgraphs reduced the
depth to n/64.

Analytical and empirical results Looking under the hood in the analysis of [4], the meta-
graph Gm with m = 160 log n is analytically a (n, 0.961, 0.3, 160 log n) depth robust graph with
overwhelming probability. Alwen et. al. also give an empirical analysis on their 2-regular
graph construction for n = 224 nodes where they implement the best known depth reducing
attacks to locate subsets of various sizes that contain short paths. The graph in their paper
shows pairs (d, e) where d is the lowest depth found in any subgraph of size at least n − e.
For example, their experiment results show that for e = 0.2 × 107 the smallest depth found
was around 4 × 106 ≈ 0.24n nodes, suggesting that the sampled graph is (224, 0.88, 0.24, 2)
depth robust. We implemented the same attacks against the larger degree graphs output by
BucketSample[n,m], which are mostly based on a classical algorithm by Valiant [29] for locating a
depth reducing set, shown below in Figure 4.1. The empirical results suggest that the graph out-
put by BucketSample[n, 5] on n = 220 is (n, 0.70, 1/4, 6) depth robust, that BucketSample[n, 10] is

23

(n, 0.28, 1/32, 11) depth robust, and that BucketSample[n, 20] is (n, 0.10, 1/64, 21) depth robust,
retaining high depth even in 10% subgraphs.

References

[1] Proof of replication. Protocol Labs, 2017. https://filecoin.io/proof-of-replication.
pdf.

[2] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid
Reyzin. Beyond hellman’s time-memory trade-offs with applications to proofs of space. In
ASIACRYPT, 2017.

[3] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative com-
plexity. In ASIACRYPT, pages 191–219, 2016.

[4] Joël Alwen, Jeremiah Blocki, and Benjamin Harsha. Practical graphs for optimal side-
channel resistant memory-hard functions. In CCS, 2017.

[5] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complexity. In
EUROCRYPT, 2018.

[6] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O. Karame. Mir-
ror: Enabling proofs of data replication. In 25th USENIX Security Symposium, 2016.

[7] Leonid Alexandrovich Bassalygo. Asymptotically optimal switching circuits. In Problemy
Peredachi Informatsii, 1981.

[8] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks
for C: verifying program executions succinctly and in zero knowledge. In CRYPTO, 2013.

[9] Dan Boneh, Joseph Bonneau, Benedikt Bunz, and Ben Fisch. Verifiable delay functions.
2018. To appear in CRYPTO 2018.

[10] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC 2013,
2013.

[11] F.R.K. Chung. On concentrators, superconcentrators, generalizers, and nonblocking net-
works. In Bell System Technical Journal, 1979.

[12] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. In CRYPTO, 2015.

[13] Ben Fisch. Poreps: Proofs of space on useful data. Cryptology ePrint Archive, Report
2018/678, 2018. https://eprint.iacr.org/2018/678.

[14] Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A memory-consuming password
scrambler. IACR Cryptology ePrint Archive, 2013.

[15] Dan Boneh Henry Corrigan-Gibbs and Stuart Schechter. Balloon hashing: a provably
memory-hard function with a data-independent access pattern. In Asiacrypt, 2016.

[16] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings
of the 14th ACM conference on Computer and communications security, pages 584–597.
Acm, 2007.

[17] Arjen K Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx. IACR
Cryptology ePrint Archive, 2015, 2015.

[18] Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics,
pages 649–673, 1987.

[19] Sergio Demian Lerner. Proof of unique blockchain storage, 2014. https://bitslog.

24

https://filecoin.io/proof-of-replication.pdf
https://filecoin.io/proof-of-replication.pdf
https://eprint.iacr.org/2018/678
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/

wordpress.com/2014/11/03/proof-of-local-blockchain-storage/.
[20] Benôıt Libert and Moti Yung. Concise mercurial vector commitments and independent

zero-knowledge sets with short proofs. In TCC, 2010.
[21] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly verifiable proofs of sequen-

tial work. In Proceedings of the 4th conference on Innovations in Theoretical Computer
Science. ACM, 2013.

[22] Mohammad Mahmoody, Tal Moran, and Salil P Vadhan. Time-lock puzzles in the random
oracle model. In CRYPTO. Springer, 2011.

[23] Salil Vadhan Omer Reingold and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In FOCS, 2000.

[24] Ronald L. Graham Paul Erdös and Endre Szemeredi. On sparse graphs with dense long
paths. In Computers & Mathematics with Applications, 1975.

[25] Krzysztof Pietrzak. Proofs of Catalytic Space. Cryptology ePrint Archive # 2018/194,
2018.

[26] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In TCC, 2016.
[27] Randal Burns Reza Curtmola, Osama Khan and Giuseppe Ateniese. Mr-pdp: Multiple-

replica provable data possession. In In Distributed Computing Systems, 2008. ICDCS08.,
2008.

[28] Uwe Schöning. Better expanders and superconcentrators by kolmogorov complexity. In
SIROCCO, 1997.

[29] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical
Foundations of Computer Science, 1977.

[30] Gaven J. Watson, Reihaneh Safavi-Naini, Mohsen Alimomeni, Michael E. Locasto, and
Shivaramakrishnan Narayan. Lost: location based storage. In CCSW, 2012.

25

https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/

